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Abstract 

Advances in medical science have seen a growth in the virtual 

modelling of rheological-blood systems.  Current studies of 

rheological systems are predominantly based on simplified 

empirical characterisations of non-Newtonian fluids [5]. To gain 

a more in-depth understanding of these processes, explicit 

modelling of red blood cells, their movement, collisions and fluid 

dynamic interactions are necessary.  Here, we seek to explicitly 

model the bi-concave disc shape of red blood cells and track their 

movement against the background of non-moving finite volume 

mesh.  This was achieved using an interface tracking method [7] 

developed in-house in Fortran95.  Explicit Lagrangian tracking of 

blood cells carries the potential for finite element analysis (FEA) 

simulations of cell structures and the modelling of fluid-structure 

interactions.   

Introduction  

Human blood is a complex mixture of plasma, red blood cells 

(erythrocytes), platelets (thrombocytes) and white blood cells 

(leukocytes).  The mixture is predominantly composed of plasma 

at 55% and red blood cells (RBCs) at 45% (the hematocrit value).  

Plasma, a mixture of water, dissolved proteins, glucose, 

hormones and carbon dioxide, behaves like a Newtonian fluid.  

However, RBCs as a mixture with plasma exhibit non-linear flow 

characteristics due to the RBC’s deformable biconcave disc-

shape which flex and stretch elastically as a result of applied fluid 

and boundary forces.  RBCs’ membrane consists of a lipid 

bilayer of fatty molecules that is attached to a cytoskeleton 

structure and filled with a haemoglobin solution.  RBCs typically 

measure 8µm in diameter and 2µm in thickness [1]. In the 

process of circulation, RBCs must flow through both large 

arteries as well as small capillary blood vessels, some of which 

are only 3µm in diameter. The properties of RBCs have been 

investigated in a number of experiments, namely in micro pipette 

aspirations [3], RBC deformations by optical tweezers [6] and 

membrane response due to thermal fluctuations.  These 

experiments concluded RBC membranes demonstrated 

viscoelastic properties.  Due to the complex interaction between 

flow dynamics and RBC viscoelasticity, a higher level of detail 

can be obtained if the transient fluid-structure interactions of 

RBCs and flow were deterministically modelled without the use 

of empirically derived closure expressions.   

Jafari et al. [8] numerically investigated the tendency for RBCs to 

aggregate into ‘stacks of discs’ in the narrow confines of 

capillaries by using a VOF representation of RBCs.  The VOF 

model did reveal the tendency for RBCs to aggregate but as the 

simulation progressed it was clear that the high shear rate of 

capillary flows was too strong for the VOF interface to resist and 

the RBC would lose its shape.  It was obvious an FEA model was 

needed to calculate the balance of forces between the applied 

stress and the RBC structure’s restoring force.    

AlMomani et al. [1] used the level set method to model RBCs 

and the Immersed Boundary (IB) method to simulate the 

Fahraeus-Lindquist effect whereby RBCs migrate to the centre of 

the blood vessel and platelets migrate to the wall, thus changing 

the blood’s effective viscosity.  His results were promising, 

showing the tendency for RBC centre-line migration to increase 

with increasing hematocrit value though admittedly the results 

were for very slow flows of Re = 1.0 and in two dimensions.  

Fedosov et al. [4] developed a complex model of the RBC where 

the viscoelastic lipid bilayer was modelled as a separate entity 

from the haemoglobin mixture held within.  By using an FEA-

like 2D triangular lattice, known as dissipative particle dynamics 

(DPD) modelling, the membrane viscoelasticity, membrane 

bending resistance and membrane thermal fluctuations could be 

simulated with accuracies close to experimental results and better 

than theoretical predictions which assumed simplified ellipsoid 

RBC shapes.  When a Poiseuille flow velocity field was applied 

to RBC DPD structure, the bi-concave disc stretched into a 

parachute form in agreement with experimental observations.  

Fedosov noted that the DPD model could be coupled with Lattice 

Boltzmann (LB) or Immersed Boundary (IB) flow solvers in 

future work to create a fully coupled fluid-structure FEA-CFD 

model of blood rheology.  Given this detailed understanding of 

the RBC structure, its membrane elasticity as well as internal 

structural dynamics, a detailed, high-fidelity meshing technique 

is the natural advancement for capturing the underlying physics 

at work. Here, we outline a dynamic meshing technique which 

provides surface mesh necessary for calculating membrane 

stresses, as well as the ability to generate the ‘cut cells’ necessary 

for finite-volume style CFD simulations. 

Intersection Marker method for multiphase CFD 
applications 

Explicit interface tracking in two-phase flows have been 

achieved in a variety of forms, including massless particle 

methods and by using the level-set mathematical function [9].  

However, these methods may not be suitable for the direct 

importation of 2D FEA surface meshes into regular 3D 

hexahedral Eulerian mesh required for finite-volume CFD 

simulations.  Presently, we have developed [7] a hybrid 

Lagrangian-Eulerian front-tracking method called the 

intersection-marker (ISM) method which tracked the 2D surface 

as a Lagrangian but remeshed the surface within each control 

volume for each timestep so that both positional accuracy, 

surface continuity and volume conservation were preserved.  It 

was realised that apart from having developed a detailed interface 

tracking algorithm for deformable surfaces, the method was 



ideally suited for importing FEA-like triangular mesh for 

immersed-boundary type CFD simulations.   

The ISM interface tracking method works by representing a 

closed 2D surface as a collection of discrete interfaces residing 

within their respective control volumes.  The interface of 3 to 6 

sides is subdivided into triangular surfaces for higher accuracy.   

Also, it is necessary to represent the basic interface as triangular 

elements because a triangular surface subjected to a twisting 

vector field will always recover a quantifiable planar surface. 

   

 

Figure 1. Intersection-marker (ISM) representation of a  

2D interface in a regular hexahedral control volume.  

Figure 1 shows a four sided interface modelled using the ISM 

method.  The interface is made up of its component points, (1) 

the intersection markers where the interface crosses the control 

volume cell edges, (2) the cell face conservation points which 

allow composite curves to be modelled, and (3) the raised 

centroid whose position is calculated to satisfy volumetric 

conservation.  Also present but not shown is the ‘surface normal’ 

that is orientated perpendicular to a Least-Squares-Fit-Plane 

calculated from the combination of intersection markers.  The 

normal vector is pointed outwards from the material surface to 

differentiate which portion of the cut volume contains the tracked 

void fraction.  Calculation of the void fraction is by summing the 

triangular columns as evaluated by multiplying the triangular 

base area with the column’s centroidal height.   

 

Figure 2.  Four examples of different ISM combinations. 
 

The ISM method identifies the type of interface inhabiting a cell 

by the combination of cell-edge intersections that interface 

makes.   As discussed in the previous paper [7], a basic set of 

planar-type interfaces: 8 intersection marker combinations for 3 

sided interfaces, 15 for 4 sided, 24 for 5 sided and 4 for 6 sided; 

(total 51 combinations, Figure 2) provided a standard look-up 

table for algorithmic identification.  However, more intersection-

marker combinations were encountered after rigorous testing.  

These new combinations included non-planar-type interfaces.   

  

Figure 3.  Polygon subdivision strategies for ISM interface modelling. 

 

Twenty four new combinations were found for 6-sided interfaces 

which were twisted from the planar position.  Another 24 

combinations were found when ‘saddle shaped’ 6 sided surfaces 

were encountered. Moreover, the standard layouts of interface 

subdivision (Figure 3.) required modification for high aspect-

ratio four-sided interfaces and for five-sided interfaces where one 

side is grossly concave side (Figure 4.).  These new layouts were 

necessary to prevent the modelled interface from collapsing and 

folding onto itself.   

  

Figure 4.  Modified polygon subdivisions for irregular-shaped interfaces. 
  

 
Figure 5: Typical composite interface within  

a control volume before remeshing 
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FEA Mesh Importation. 

Given a 2D triangular surface-mesh, we want to convert this into 

a 3D volume mesh suitable for finite volume solutions.  The 

process of FEA mesh importation is conducted in two steps.  

First, each triangular surface is projected to a 3D Eulerian space 

of regular hexahedrons.  Each triangle mapped onto the Eulerian 

mesh may intersect a number of control volumes. The algorithm 

keeps a tally of all triangular surfaces necessary for 

reconstructing the composite interface of each ‘interface cell.’ 

(Figure 5.)  The cell-edge intersections these triangles make with 

each Eulerian control volume also identifies the type of interface 

that will reside in each interface volume.  Knowing the triangles 

necessary for the reconstruction of each interface cell,  

 

 Figure 6.  2D Interface tracking of a disc-shaped RBC inside regular 

cube mesh.  Compound curvatures inside unit-volume mesh are 
 displayed in Volume of Fraction (VOF) contours. 

the algorithm conducts a second-pass to (1) remesh the points of 

the poly-line on each cell-face to only two ‘face points’.  The 

remeshed polyline becomes a trapezoid in a calculation similar to 

Aulisa’s 2D interface tracking method [2] and (2) calculating the 

position of the ‘raised-centroid’ so that that the volume of the 

composite interface before remeshing is equal to the volume of 

the remeshed interface.   

 

Figure 7.  Side view of RBC interface model. 

 

 

Results: mapping of the FEA mesh.   

To benchmark the accuracy of the interface tracking algorithm, 

we generated a RBC disc to test the translational and rotational 

mapping of the FEA mesh to the CFD mesh.  We did this 

knowing that a RBC disc is more difficult to model than a disc, 

possessing both concave and convex surfaces with both sharp and 

subtle interface curvatures. And it is for this reason that we found 

the extra interface topologies as noted earlier.  However, it can be 

reported that the method works quite well, conserving a ~1400 

unit volume disc of diameter 18 unit and height of 6 units, to 

within a value of 1x10-7 unit volume. (Figure 6.) Due to the 

limitations of floating point calculations and global tolerance 

issues in meshing and remeshing, there are inevitably small  

 

Figure 8.  Top view of RBC mapped to CFD mesh showing each 

interface clearly within the bounds of its own control volume. 

discrepancies that arise from the many scalar and vector 

operations made in the calculation.  On a cell-by-cell basis, this 

discrepancy is so small as to have a negligible effect on the void 

fraction calculation necessary for mass and momentum 

conservation.  Furthermore, since all positions of the RBC’s 

interface are mapped from the original interface, small 

volumetric errors do not propagate throughout the transient 

simulation.   

 
Figure 9.  Front view of RBC interface model in finite volume mesh. 



Advection of RBC model.   

Advection of the RBC model can be done in a variety of ways.  

The simplest method, where no internal or membrane stresses are 

taken into account, would use the velocity field as calculated by 

the flow solver, to directly map the points of the interface to its 

new location.  The advection of interface points inside each 

control volume is calculated using the tri-linear interpolation 

method.  Eight points of the vector field, positioned on the 

vertices of each control volume, are used as the input parameters 

of the tri-linear interpolation.  In this manner the interface 

position is updated for each successive timestep.   

A more sophisticated manner of advecting the interface would be 

to calculate the surface pressure integral of the RBC; then feed 

that information into the 3D FEA model as laid out the initial 

RBC mesh to calculate for RBC deformation / deflection; then 

finally to calculate for the net movement of the RBC as a result 

of the net force applied on the RBC through its centroid.  All 

points on the RBC are thus translated to their new position as 

calculated in the net movement.      

Conclusions and future work. 

The Intersection Marker (ISM) method for interface tracking was 

used to import a 2D-surface FEA mesh into a 3D hexahedral 

mesh to ultimately model red blood cell (RBCs) movements in an 

immersed boundary CFD simulation.  Progress to this point has 

been successful with the method demonstrating a high degree of 

detail and accuracy.  The level of detail allow many options for 

the research to proceed.  The fluid domain internal and external 

of the RBC membrane can be decoupled and solved separately. 

Likewise, the pressure information as calculated by the flow 

solver can be used to calculate for RBC deflection in a FEA 

simulation.  This would entail the communication of stresses 

from the fluid flow to the FEA mesh, resulting in FEA mesh 

deflection which would be fed back into the CFD mesh allowing 

for coupled FEA-CFD fluid structure interaction.  Conversely, a 

single-fluid approach can be adopted for simplicity in 

manipulating the interface. More research and investigation is 

needed to ascertain what the optimal solution may be.  
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